Logo

Advanced Topics of Theoretical Physics II: The statistical properties of matter

Small book cover: Advanced Topics of Theoretical Physics II: The statistical properties of matter

Advanced Topics of Theoretical Physics II: The statistical properties of matter
by

Publisher: TU Clausthal
Number of pages: 182

Description:
From the table of contents: Transition-state theory; Diffusion; Monte Carlo Method; Quantum Monte Carlo; Decoherence; Notes on the Interpretation of Quantum Mechanics; Irreversible Thermodynamics; Transport; Interacting Systems and Phase Transitions; etc.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Statistical Mechanics NotesStatistical Mechanics Notes
by - New Mexico Tech
From the table of contents: Fundamental Principles of Statistical Physics; Selected Applications (Classical Systems, Ideal Fermi Gas, Ideal Bose Gas, Black Body Radiation, Relativistic Degenerate Electron Gas); Introduction to Kinetic Theory.
(5453 views)
Book cover: Thermodynamics and Statistical PhysicsThermodynamics and Statistical Physics
by - University of Bonn
Contents: Introduction and overview; Thermodynamics; Foundations of statistical physics; Ideal systems: some examples; Systems of identical particles; General formulation of statistical mechanics; Interacting systems in thermodyn. equilibrium.
(9962 views)
Book cover: Lectures on Noise Sensitivity and PercolationLectures on Noise Sensitivity and Percolation
by - arXiv
The goal of this set of lectures is to combine two seemingly unrelated topics: (1) The study of Boolean functions, a field particularly active in computer science; (2) Some models in statistical physics, mostly percolation.
(7025 views)
Book cover: Introduction to the theory of stochastic processes and Brownian motion problemsIntroduction to the theory of stochastic processes and Brownian motion problems
by - arXiv
Contents: Stochastic variables; Stochastic processes and Markov processes; The master equation; The Langevin equation; Linear response theory, dynamical susceptibilities, and relaxation times; Langevin and Fokker–Planck equations; etc.
(5346 views)