**Principles of Differential Geometry**

by Taha Sochi

**Publisher**: viXra 2016**Number of pages**: 161

**Description**:

The present text is a collection of notes about differential geometry prepared to some extent as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Lectures on Minimal Surface Theory**

by

**Brian White**-

**arXiv**

The goal was to give beginning graduate students an introduction to some of the most important basic facts and ideas in minimal surface theory. Prerequisites: the reader should know basic complex analysis and elementary differential geometry.

(

**3615**views)

**Combinatorial Geometry with Application to Field Theory**

by

**Linfan Mao**-

**InfoQuest**

Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.

(

**9496**views)

**Discrete Differential Geometry: An Applied Introduction**

by

**M. Desbrun, P. Schroeder, M. Wardetzky**-

**Columbia University**

This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).

(

**9259**views)

**Ricci-Hamilton Flow on Surfaces**

by

**Li Ma**-

**Tsinghua University**

Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.

(

**5022**views)