**Lectures on Periodic Homogenization of Elliptic Systems**

by Zhongwei Shen

**Publisher**: arXiv.org 2017**Number of pages**: 246

**Description**:

In recent years considerable advances have been made in quantitative homogenization of partial differential equations in the periodic and non-periodic settings. This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients...

Download or read it online for free here:

**Download link**

(2.2MB, PDF)

## Similar books

**Finite Difference Computing with PDEs**

by

**Hans Petter Langtangen, Svein Linge**-

**Springer**

This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners.

(

**1085**views)

**Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems**

by

**Marco Squassina**-

**Electronic Journal of Differential Equations**

A survey of results about existence, multiplicity, perturbation from symmetry and concentration phenomena for a class of quasi-linear elliptic equations coming from functionals of the calculus of variations which turn out to be merely continuous.

(

**4714**views)

**An Algorithm for Constructing Lyapunov Functions**

by

**Sigurdur Freyr Hafstein**

In this monograph we develop an algorithm for constructing Lyapunov functions for arbitrary switched dynamical systems, possessing a uniformly asymptotically stable equilibrium. We give examples of Lyapunov functions constructed by our method.

(

**4702**views)

**An Introduction to Microlocal Analysis**

by

**Richard B. Melrose, Gunther Uhlmann**-

**MIT**

The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.

(

**5655**views)