Logo

Non-Uniform Random Variate Generation

Large book cover: Non-Uniform Random Variate Generation

Non-Uniform Random Variate Generation
by

Publisher: Springer
ISBN/ASIN: 0387963057
ISBN-13: 9780387963051
Number of pages: 843

Description:
This text is about one small field on the crossroads of statistics, operations research and computer science. Statisticians need random number generators to test and compare estimators before using them in real life. In operations research, random numbers are a key component in large scale simulations. Computer scientists need randomness in program testing, game playing and comparisons of algorithms.

Home page url

Download or read it online for free here:
Download link
(37MB, ZIP/PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: Theory of Probability: A Historical EssayTheory of Probability: A Historical Essay
by - arXiv.org
This book covers the history of probability up to Kolmogorov with essential additional coverage of statistics up to Fisher. The book covers an extremely wide field, and is targeted at the same readers as any other book on history of science.
(2089 views)
Book cover: Lectures on Noise Sensitivity and PercolationLectures on Noise Sensitivity and Percolation
by - arXiv
The goal of this set of lectures is to combine two seemingly unrelated topics: (1) The study of Boolean functions, a field particularly active in computer science; (2) Some models in statistical physics, mostly percolation.
(7225 views)
Book cover: Probability and Statistics for Geophysical ProcessesProbability and Statistics for Geophysical Processes
by - National Technical University of Athens
Contents: The utility of probability; Basic concepts of probability; Elementary statistical concepts; Special concepts of probability theory in geophysical applications; Typical univariate statistical analysis in geophysical processes; etc.
(2116 views)
Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(9504 views)