**Introduction to Differential Geometry and General Relativity**

by Stefan Waner

2005**Number of pages**: 138

**Description**:

From the table of contents: distance, open sets, parametric surfaces and smooth functions, smooth manifolds and scalar fields, tangent vectors and the tangent space, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, geodesics and local inertial frames, the Riemann curvature tensor, comoving frames and proper time, the stress tensor and the relativistic stress-energy tensor, three basic premises of general relativity, the Einstein field equations and derivation of Newton's law, the Schwarzschild metric and event horizons, White Dwarfs, neutron stars and black holes.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Advanced General Relativity**

by

**Sergei Winitzki**-

**Google Sites**

Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.

(

**6622**views)

**Dynamical and Hamiltonian Formulation of General Relativity**

by

**Domenico Giulini**-

**arXiv.org**

This text introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects.

(

**1152**views)

**Gravitational Waves and Black Holes: an Introduction to General Relativity**

by

**J.W. van Holten**-

**arXiv**

General relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves and stationary fields of black holes are discussed.

(

**7658**views)

**Lecture Notes on General Relativity**

by

**Matthias Blau**-

**Universitaet Bern**

The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.

(

**7896**views)