**An Invitation to General Algebra and Universal Constructions**

by George M. Bergman

**Publisher**: Henry Helson 1998**ISBN/ASIN**: 0965521141**ISBN-13**: 9780965521147**Number of pages**: 398

**Description**:

From the contents: Free groups; A Cook's tour of other universal constructions; Ordered sets, induction, and the Axiom of Choice; Lattices, closure operators, and Galois connections; Categories and functors; Universal constructions in category-theoretic terms; Varieties of algebras; Algebra and coalgebra objects in categories, and functors having adjoints.

Download or read it online for free here:

**Download link**

(multiple PS files)

## Similar books

**Infinite-dimensional Lie Algebras**

by

**Iain Gordon**-

**University of Edinburgh**

Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.

(

**8055**views)

**Graduate Algebra**

by

**Leonard Evens**-

**Northwestern University**

Contents: Groups; Group actions on sets; Normal series; Ring theory; Modules; Hom and tensor; Field theory; Galois theory; Applications of Galois theory; Infinite extensions; Categories; Multilinear algebra; More ring theory; Localization; etc.

(

**8807**views)

**Commutator Theory for Congruence Modular Varieties**

by

**Ralph Freese, Ralph McKenzie**-

**Cambridge University Press**

This book presents the basic theory of commutators in congruence modular varieties and some of its strongest applications. The authors take an algebraic approach, using some of the shortcuts that Taylor and others have discovered.

(

**7953**views)

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**9099**views)