Logo

Homogeneous Spaces and Equivariant Embeddings

Small book cover: Homogeneous Spaces and Equivariant Embeddings

Homogeneous Spaces and Equivariant Embeddings
by

Publisher: arXiv
Number of pages: 250

Description:
This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Geometric Complexity Theory: An Introduction for GeometersGeometric Complexity Theory: An Introduction for Geometers
by - arXiv
This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory. The article is written to be accessible to graduate students. Numerous open questions are presented.
(3741 views)
Book cover: Introduction to Algebraic GeometryIntroduction to Algebraic Geometry
by
From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.
(6988 views)
Book cover: Current Developments in Algebraic GeometryCurrent Developments in Algebraic Geometry
by - Cambridge University Press
An introductory panorama of current progress in the field, addressed to both beginners and experts. This volume offers expository overviews of the state of the art in many areas of algebraic geometry. Prerequisites are kept to a minimum ...
(2674 views)
Book cover: Algebraic GeometryAlgebraic Geometry
by
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(10123 views)