**Intro to Abstract Algebra**

by Paul Garrett

1998**Number of pages**: 200

**Description**:

The text covers basic algebra of polynomials, induction and the well-ordering principle, sets, counting principles, integers, unique factorization into primes, prime numbers, Sun Ze's theorem, hood algorithm for exponentiation, Fermat's little theorem, Euler's theorem, public-key ciphers, pseudoprimes and primality tests, vectors and matrices, motions in two and three dimensions, permutations and symmetric groups, rings and fields, etc.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Advanced Algebra**

by

**Anthony W. Knapp**-

**BirkhĂ¤user**

This book includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry.

(

**1809**views)

**Abstract Algebra for Polynomial Operations**

by

**Maya Mohsin Ahmed**

The focus of this book is applications of Abstract Algebra to polynomial systems. It explores basic problems like polynomial division, solving systems of polynomials, formulas for roots of polynomials, counting integral roots of equations, etc.

(

**2056**views)

**Elements of Abstract and Linear Algebra**

by

**Edwin H. Connell**

Covers abstract algebra in general, with the focus on linear algebra, intended for students in mathematics, physical sciences, and computer science. The presentation is compact, but still somewhat informal. The proofs of many theorems are omitted.

(

**11371**views)

**Notes on Algebraic Structures**

by

**Peter J. Cameron**-

**Queen Mary, University of London**

After a short introductory chapter consisting mainly of reminders about such topics as functions, equivalence relations, matrices, polynomials and permutations, the notes fall into two chapters, dealing with rings and groups respectively.

(

**4412**views)