Logo

Notes on Diffy Qs: Differential Equations for Engineers

Large book cover: Notes on Diffy Qs: Differential Equations for Engineers

Notes on Diffy Qs: Differential Equations for Engineers
by

Publisher: Lulu.com
Number of pages: 371

Description:
One semester introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, and the Laplace transform.

Home page url

Download or read it online for free here:
Download link
(3.1MB, PDF)

Similar books

Book cover: Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equationsBeyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(7910 views)
Book cover: Techniques of Applied MathematicsTechniques of Applied Mathematics
by - University of Oxford
This course develops mathematical techniques which are useful in solving 'real-world' problems involving differential equations. The course embraces the ethos of mathematical modelling, and aims to show in a practical way how equations 'work'.
(6855 views)
Book cover: Differential and Integral Equations: Boundary Value Problems and AdjointsDifferential and Integral Equations: Boundary Value Problems and Adjoints
by - Academia Praha
The book is devoted to certain problems which belong to the domain of integral equations and boundary value problems for differential equations. Its essential part is concerned with linear systems of integral and generalized differential equations...
(2128 views)
Book cover: Analysis Tools with ApplicationsAnalysis Tools with Applications
by - Springer
These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.
(9289 views)