**An Elementary Introduction to Groups and Representations**

by Brian C. Hall

**Publisher**: arXiv 2000**Number of pages**: 128

**Description**:

These notes give an elementary introduction to Lie groups, Lie algebras, and their representations. Designed to be accessible to graduate students in mathematics or physics, they have a minimum of prerequisites. Topics include definitions and examples of Lie groups and Lie algebras, the relationship between Lie groups and Lie algebras via the exponential mapping, the basics of representations theory, the Baker-Campbell-Hausdorff formula, a detailed study of the representations of SU(3), and a brief survey of the representation theory of general semisimple groups.

Download or read it online for free here:

**Download link**

(950KB, PDF)

## Similar books

**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by

**Predrag Cvitanovic**-

**Princeton University Press**

A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.

(

**10285**views)

**Introduction to Groups, Invariants and Particles**

by

**Frank W. K. Firk**-

**Orange Grove Texts Plus**

This is an introduction to group theory, with an emphasis on Lie groups and their application to the study of symmetries of the fundamental constituents of matter. The text was written for seniors and advanced juniors, majoring in the physical sciences.

(

**13873**views)

**Combinatorial Group Theory**

by

**Charles F. Miller III**-

**University of Melbourne**

Lecture notes for the subject Combinatorial Group Theory at the University of Melbourne. Contents: About groups; Free groups and presentations; Construction of new groups; Properties, embeddings and examples; Subgroup Theory; Decision Problems.

(

**9546**views)

**Theory of Groups of Finite Order**

by

**William Burnside**-

**Cambridge University Press**

After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.

(

**5769**views)