**Bayesian Spectrum Analysis and Parameter Estimation**

by G. Larry Bretthorst

**Publisher**: Springer 1988**ISBN/ASIN**: 0387968717**ISBN-13**: 9780387968711**Number of pages**: 220

**Description**:

This work is primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Statistics, Probability, and Game Theory: papers in honor of David Blackwell**

by

**David Blackwell, at al.**-

**IMS**

The bulk of the articles in this volume are research articles in probability, statistics, gambling, game theory, Markov decision processes, set theory and logic, comparison of experiments, games of timing, merging of opinions, etc.

(

**8065**views)

**Design of Comparative Experiments**

by

**R. A. Bailey**-

**Cambridge University Press**

This book develops a coherent framework for thinking about factors that affect experiments and their relationships, including the use of Hasse diagrams. The book is ideal for advanced undergraduate and beginning graduate courses.

(

**15947**views)

**Introduction Probaility and Statistics**

by

**Muhammad El-Taha**-

**University of Southern Maine**

Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.

(

**21161**views)

**Lectures on Stochastic Analysis**

by

**Thomas G. Kurtz**-

**University of Wisconsin**

Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.

(

**9126**views)