Logo

Book of Proof by Richard Hammack

Small book cover: Book of Proof

Book of Proof
by

Publisher: Virginia Commonwealth University
Number of pages: 270

Description:
This textbook is an introduction to the standard methods of proving mathematical theorems. It is written for an audience of mathematics majors at Virginia Commonwealth University, and is intended to prepare the students for more advanced courses. The book is suitable for almost any undergraduate mathematics program.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
(10143 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(10501 views)
Book cover: Basic Concepts of MathematicsBasic Concepts of Mathematics
by - The Trillia Group
The book will help students complete the transition from purely manipulative to rigorous mathematics. It covers basic set theory, induction, quantifiers, functions and relations, equivalence relations, properties of the real numbers, fields, etc.
(10882 views)
Book cover: A Gentle Introduction to the Art of MathematicsA Gentle Introduction to the Art of Mathematics
by - Southern Connecticut State University
The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).
(10711 views)