Logo

Computational Mathematics for Differential Equations

Small book cover: Computational Mathematics for Differential Equations

Computational Mathematics for Differential Equations
by

Description:
This is a manual on solving problems in computational mathematics. The book is intended primarily for engineering students, but may also prove useful for economics students, for graduate engineers, and for postgraduate students and scientific workers in the applied sciences.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Analysis Tools with ApplicationsAnalysis Tools with Applications
by - Springer
These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.
(9289 views)
Book cover: Why the Boundary of a Round Drop Becomes a Curve of Order FourWhy the Boundary of a Round Drop Becomes a Curve of Order Four
by - American Mathematical Society
This book concerns the problem of evolution of a round oil spot surrounded by water when oil is extracted from a well inside the spot. It turns out that the boundary of the spot remains an algebraic curve of degree four in the course of evolution.
(11833 views)
Book cover: Notes on Differential EquationsNotes on Differential Equations
by
Introductory notes on ordinary and partial differential equations for engineers. The text covers only the most important ideas. Assumed background is calculus and a little physics. Linear algebra is introduced in four of the lectures.
(12752 views)
Book cover: An Elementary Treatise On Differential Equations And Their ApplicationsAn Elementary Treatise On Differential Equations And Their Applications
by - G. Bell
The object of this book is to give an account of the central parts of the subject in as simple a form as possible, suitable for those with no previous knowledge of it, and to point out the different directions in which it may be developed.
(5112 views)