Logo

The Eightfold Way: The Beauty of Klein's Quartic Curve

The Eightfold Way: The Beauty of Klein's Quartic Curve
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521660661
ISBN-13: 9780521660662
Number of pages: 331

Description:
The German mathematician Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry, the maximum possible degree of symmetry for any surface of its type. This volume explores the rich tangle of properties and theories surrounding this multiform object.

Home page url

Download or read it online for free here:
Download link
(multiple PDF,PS files)

Similar books

Book cover: Hyperbolic GeometryHyperbolic Geometry
by - MSRI
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.
(4938 views)
Book cover: Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical SystemsEuclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems
by - Open Court Publishing Co.
The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...
(3103 views)
Book cover: Geometry with an Introduction to Cosmic TopologyGeometry with an Introduction to Cosmic Topology
by
This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.
(1720 views)
Book cover: Non-Euclidean Geometry: A Critical and Historical Study of its DevelopmentNon-Euclidean Geometry: A Critical and Historical Study of its Development
by - Open Court Publishing Company
Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.
(5588 views)