Logo

Theory of Functions of a Real Variable

Large book cover: Theory of Functions of a Real Variable

Theory of Functions of a Real Variable
by


Number of pages: 393

Description:
I have taught the beginning graduate course in real variables and functional analysis three times in the last five years, and this book is the result. The course assumes that the student has seen the basics of real variable theory and point set topology. Contents: the topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras and the spectral theorem, Stone’s theorem, scattering theory.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Mathematical Analysis IMathematical Analysis I
by - The Trillia Group
Topics include metric spaces, convergent sequences, open and closed sets, function limits and continuity, sequences and series of functions, compact sets, power series, Taylor's theorem, differentiation and integration, total variation, and more.
(10726 views)
Book cover: Basic Analysis: Introduction to Real AnalysisBasic Analysis: Introduction to Real Analysis
by - Lulu.com
This is a free online textbook for a first course in mathematical analysis. The text covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, and sequences of functions.
(14800 views)
Book cover: Orders of InfinityOrders of Infinity
by - Cambridge University Press
The ideas of Du Bois-Reymond's 'Infinitarcalcul' are of great and growing importance in all branches of the theory of functions. The author brings the Infinitarcalcul up to date, stating explicitly and proving carefully a number of general theorems.
(5727 views)
Book cover: Mathematical Analysis IIMathematical Analysis II
by - The TrilliaGroup
This book follows the release of the author's Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses. The text is appropriate for any second course in real analysis or mathematical analysis.
(11121 views)