**Smarandache Semigroups**

by W. B. Vasantha Kandasamy

**Publisher**: American Research Press 2002**ISBN/ASIN**: 1931233594**ISBN-13**: 9781931233590**Number of pages**: 95

**Description**:

This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference. Since most of the properties and theorems given regarding the Smarandache semigroups are new and cannot be found in existing literature the author has taken utmost efforts to see that the concepts are completely understood by illustrating with examples and a great number of problems.

Download or read it online for free here:

**Download link**

(500KB, PDF)

## Similar books

**Theory of Groups of Finite Order**

by

**William Burnside**-

**Cambridge University Press**

After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.

(

**5579**views)

**Congruence Lattices of Finite Algebras**

by

**William DeMeo**-

**arXiv**

We review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist...

(

**4767**views)

**Introduction to Lie Groups and Lie Algebras**

by

**Alexander Kirillov, Jr.**-

**SUNY at Stony Brook**

The book covers the basic contemporary theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. Written in an informal style.

(

**9428**views)

**Why are Braids Orderable?**

by

**Patrick Dehornoy, at al.**

This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

(

**7634**views)