Logo

Noncommutative Geometry by Alain Connes

Large book cover: Noncommutative Geometry

Noncommutative Geometry
by

Publisher: Academic Press
ISBN/ASIN: 012185860X
ISBN-13: 9780121858605
Number of pages: 654

Description:
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.

Home page url

Download or read it online for free here:
Download link
(4.1MB, PDF)

Similar books

Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(12773 views)
Book cover: First Steps Towards a Symplectic DynamicsFirst Steps Towards a Symplectic Dynamics
by - arXiv
Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.
(6497 views)
Book cover: Edinburgh Lectures on Geometry, Analysis and PhysicsEdinburgh Lectures on Geometry, Analysis and Physics
by - arXiv
These notes are based on a set of six lectures that the author gave in Edinburgh and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and they may stimulate readers to investigate them.
(5069 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(11556 views)