**Introduction to Homological Geometry**

by Martin A. Guest

**Publisher**: arXiv 2001

**Description**:

This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Download or read it online for free here:

**Download link 1**

**Download link 2**

(multiple PDF files)

## Similar books

**The Convenient Setting of Global Analysis**

by

**Andreas Kriegl, Peter W. Michor**-

**American Mathematical Society**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.

(

**9002**views)

**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by

**Dominic Joyce**-

**arXiv**

An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

(

**7901**views)

**An Introduction to Gaussian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.

(

**7068**views)

**Exterior Differential Systems**

by

**Robert L. Bryant, et al.**-

**MSRI**

An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It includes both the theory and applications.

(

**2014**views)