Logo

Elementary Real Analysis by B. S. Thomson, J. B. Bruckner, A. M. Bruckner

Large book cover: Elementary Real Analysis

Elementary Real Analysis
by

Publisher: Prentice Hall
ISBN/ASIN: 0130190756
ISBN-13: 9780130190758
Number of pages: 735

Description:
Elementary Real Analysis is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the "big picture" and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory, uniform continuity of functions and uniform convergence of sequences of functions. Covers metric spaces. Ideal for readers interested in mathematics, particularly in advanced calculus and real analysis.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: The Foundations of AnalysisThe Foundations of Analysis
by - arXiv
This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.
(3978 views)
Book cover: Introduction to Lebesgue IntegrationIntroduction to Lebesgue Integration
by - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(10709 views)
Book cover: Notes on Measure and IntegrationNotes on Measure and Integration
by - arXiv
My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.
(3350 views)
Book cover: Mathematical Analysis IIMathematical Analysis II
by - The TrilliaGroup
This book follows the release of the author's Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses. The text is appropriate for any second course in real analysis or mathematical analysis.
(11313 views)