**Lectures on Algebraic Groups**

by Alexander Kleshchev

**Publisher**: University of Oregon 2005**Number of pages**: 166

**Description**:

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; Characteristic 0 theory; Semisimple Lie algebras; The Chevalley construction; Borel subgroups and flag varieties; The classification of reductive algebraic groups.

Download or read it online for free here:

**Download link**

(760KB, PDF)

## Similar books

**Theory and Applications of Finite Groups**

by

**G. A. Miller, H. F. Blichfeldt, L. E. Dickson**-

**J. Wiley**

The book presents in a unified manner the more fundamental aspects of finite groups and their applications, and at the same time preserves the advantage which arises when each branch of an extensive subject is written by a specialist in that branch.

(

**3594**views)

**Introduction to Arithmetic Groups**

by

**Dave Witte Morris**-

**arXiv**

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

(

**6132**views)

**Notes on Categories and Groupoids**

by

**P. J. Higgins**-

**Van Nostrand Reinhold**

A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.

(

**9856**views)

**Finite Rank Torsion Free Modules Over Dedekind Domains**

by

**E. Lee Lady**-

**University of Hawaii**

Contents: Modules Over Commutative Rings; Fundamentals; Rank-one Modules and Types; Quasi-Homomorphisms; The t-Socle and t-Radical; Butler Modules; Splitting Rings and Splitting Fields; Torsion Free Rings; Quotient Divisible Modules; etc.

(

**5056**views)