**Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics**

by N.P. Landsman

**Publisher**: arXiv 1998**Number of pages**: 90

**Description**:

This is a graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization. The reader is supposed to know elementary functional analysis and quantum mechanics.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Hilbert Space Methods for Partial Differential Equations**

by

**R. E. Showalter**-

**Pitman**

Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.

(

**10970**views)

**Lectures on Cyclic Homology**

by

**D. Husemoller**-

**Tata Institute of Fundamental Research**

Contents: Exact Couples and the Connes Exact Couple; Abelianization and Hochschild Homology; Cyclic Homology and the Connes Exact Couple; Cyclic Homology and Lie Algebra Homology; Mixed Complexes, the Connes Operator B; and more.

(

**4908**views)

**Special Course in Functional Analysis: (Non-)Commutative Topology**

by

**Ville Turunen**-

**Aalto TKK**

In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.

(

**6815**views)

**Distribution Theory (Generalized Functions)**

by

**Ivan F Wilde**

From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.

(

**6510**views)