Logo

Elliptic Curves over Function Fields

Small book cover: Elliptic Curves over Function Fields

Elliptic Curves over Function Fields
by

Publisher: arXiv
Number of pages: 72

Description:
These are the notes from a course of five lectures at the 2009 Park City Math Institute. The focus is on elliptic curves over function fields over finite fields. In the first three lectures, we explain the main classical results (mainly due to Tate) on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

Home page url

Download or read it online for free here:
Download link
(670KB, PDF)

Similar books

Book cover: Modular Forms, Hecke Operators, and Modular Abelian VarietiesModular Forms, Hecke Operators, and Modular Abelian Varieties
by - University of Washington
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...
(5114 views)
Book cover: Collections of Problems on Smarandache NotionsCollections of Problems on Smarandache Notions
by - Erhus University Press
This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.
(12229 views)
Book cover: On Some of Smarandache's ProblemsOn Some of Smarandache's Problems
by - Erhus Univ Pr
A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.
(7013 views)
Book cover: Arithmetic Duality TheoremsArithmetic Duality Theorems
by - BookSurge Publishing
This book, intended for research mathematicians, proves the duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry, for example, in the proof of Fermat's Last Theorem.
(10773 views)