**Elliptic Curves over Function Fields**

by Douglas Ulmer

**Publisher**: arXiv 2011**Number of pages**: 72

**Description**:

These are the notes from a course of five lectures at the 2009 Park City Math Institute. The focus is on elliptic curves over function fields over finite fields. In the first three lectures, we explain the main classical results (mainly due to Tate) on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

Download or read it online for free here:

**Download link**

(670KB, PDF)

## Similar books

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**7713**views)

**Collections of Problems on Smarandache Notions**

by

**Charles Ashbacher**-

**Erhus University Press**

This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.

(

**12404**views)

**Notes on Fermionic Fock Space for Number Theorists**

by

**Greg W. Anderson**-

**The University of Arizona**

This is a compilation of exercises, worked examples and key references that the author compiled in order to help readers learn their way around fermionic Fock space. The text is suitable for use by graduate students with an interest in number theory.

(

**7260**views)

**Comments and topics on Smarandache notions and problems**

by

**Kenichiro Kashihara**-

**Erhus University Press**

An examination of some of the problems posed by Florentin Smarandache. The problems are from different areas, such as sequences, primes and other aspects of number theory. The problems are solved in the book, or the author raises new questions.

(

**7800**views)