**Spacetime and Fields**

by Nikodem J. Poplawski

**Publisher**: arXiv 2009**Number of pages**: 114

**Description**:

We present a self-contained introduction to the classical theory of spacetime and fields. The order of the presentation is: 1. Spacetime (tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors), 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field).

Download or read it online for free here:

**Download link**

(890KB, PDF)

## Similar books

**General Relativity Notes**

by

**Edmund Bertschinger**-

**MIT**

Working with GR requires some understanding of differential geometry. In this text we will develop the essential mathematics needed to describe physics in curved spacetime. These notes assume familiarity with special relativity.

(

**6171**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**7910**views)

**Lecture Notes on General Relativity**

by

**Matthias Blau**-

**Universitaet Bern**

The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.

(

**7763**views)

**Partial Differential Equations of Physics**

by

**Robert Geroch**-

**arXiv**

All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.

(

**10698**views)