Logo

Spacetime and Fields by Nikodem J. Poplawski

Small book cover: Spacetime and Fields

Spacetime and Fields
by

Publisher: arXiv
Number of pages: 114

Description:
We present a self-contained introduction to the classical theory of spacetime and fields. The order of the presentation is: 1. Spacetime (tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors), 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field).

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: General Relativity NotesGeneral Relativity Notes
by - MIT
Working with GR requires some understanding of differential geometry. In this text we will develop the essential mathematics needed to describe physics in curved spacetime. These notes assume familiarity with special relativity.
(6171 views)
Book cover: Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equationsBeyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(7910 views)
Book cover: Lecture Notes on General RelativityLecture Notes on General Relativity
by - Universitaet Bern
The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.
(7763 views)
Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(10698 views)