# Commutative Algebra by Keerthi Madapusi

Commutative Algebra
by

Publisher: Harvard University
Number of pages: 177

Description:
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras and the Main Theorem of Zariski; Regular Sequences and Depth; The Cohen Macaulay Condition; Homological Theory of Regular Rings; Formal Smoothness and the Cohen Structure Theorems; etc.

(multiple formats)

## Similar books

Theory and Applications of Lattice Point Methods for Binomial Ideals
by - arXiv
This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.
(5460 views)
Introduction to Commutative Algebra
by - University of Maryland
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
(5822 views)
Commutative Algebra
by - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(6037 views)
Commutative Algebra
by - University of Georgia
Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; etc.
(5811 views)