**Diffeomorphisms of Elliptic 3-Manifolds**

by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein

**Publisher**: arXiv 2011**Number of pages**: 185

**Description**:

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, that is, those that have finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**10657**views)

**A Primer on Mapping Class Groups**

by

**Benson Farb, Dan Margalit**-

**Princeton University Press**

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.

(

**6221**views)

**Four-manifolds, Geometries and Knots**

by

**Jonathan Hillman**-

**arXiv**

The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.

(

**6824**views)

**The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds**

by

**A.A. Ranicki, et al,**-

**Springer**

The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.

(

**5235**views)