Logo

Determinantal Rings by Winfried Bruns, Udo Vetter

Large book cover: Determinantal Rings

Determinantal Rings
by

Publisher: Springer
ISBN/ASIN: 3540194681
ISBN-13: 9783540194682
Number of pages: 244

Description:
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Analysis on Homogeneous SpacesAnalysis on Homogeneous Spaces
by - Royal Institute of Technology Stockholm
The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.
(4848 views)
Book cover: Lectures on An Introduction to Grothendieck's Theory of the Fundamental GroupLectures on An Introduction to Grothendieck's Theory of the Fundamental Group
by - Tata Institute of Fundamental Research
The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.
(4841 views)
Book cover: Multiplication of Vectors and Structure of 3D Euclidean SpaceMultiplication of Vectors and Structure of 3D Euclidean Space
by - viXra
This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.
(1582 views)
Book cover: Introduction to Algebraic GeometryIntroduction to Algebraic Geometry
by - Indian Institute of Technology Bombay
This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.
(4978 views)