Logo

The Elements of Non-Euclidean Geometry

Large book cover: The Elements of Non-Euclidean Geometry

The Elements of Non-Euclidean Geometry
by

Publisher: G.Bell & Sons Ltd.
ISBN/ASIN: 0486442225
Number of pages: 158

Description:
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations. It features the relation between parataxy and parallelism, the absolute measure, the pseudosphere, and Gauss' proof of the defect-area theorem.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Download mirrors:
Mirror 1

Similar books

Book cover: The Eightfold Way: The Beauty of Klein's Quartic CurveThe Eightfold Way: The Beauty of Klein's Quartic Curve
by - Cambridge University Press
Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry. This volume explores the rich tangle of properties surrounding this multiform object.
(8822 views)
Book cover: Non-Euclidean GeometryNon-Euclidean Geometry
by - Ginn and Company
This book gives a simple and direct account of the Non-Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The entire book can be read by one who has taken the mathematical courses commonly given in our colleges.
(9726 views)
Book cover: Neutral and Non-Euclidean GeometriesNeutral and Non-Euclidean Geometries
by - UNC Charlotte
In this course the students are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry.
(6742 views)
Book cover: Geometry with an Introduction to Cosmic TopologyGeometry with an Introduction to Cosmic Topology
by
This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.
(1917 views)