Logo

Ends of Complexes by Bruce Hughes, Andrew Ranicki

Large book cover: Ends of Complexes

Ends of Complexes
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521055199
ISBN-13: 9780521055192
Number of pages: 375

Description:
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of certain topics in topology such as mapping tori and telescopes, often omitted from textbooks. It is thus simultaneously a research monograph and a useful reference.

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5679 views)
Book cover: Knot Invariants and Higher Representation TheoryKnot Invariants and Higher Representation Theory
by - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
(3172 views)
Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(2437 views)
Book cover: High-dimensional Knot TheoryHigh-dimensional Knot Theory
by - Springer
This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.
(8038 views)