**Geometric Complexity Theory: An Introduction for Geometers**

by J.M. Landsberg

**Publisher**: arXiv 2013**Number of pages**: 38

**Description**:

This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory (GCT). The article is written to be accessible to graduate students. Numerous open questions in algebraic geometry and representation theory relevant for GCT are presented.

Download or read it online for free here:

**Download link**

(440KB, PDF)

## Similar books

**Lectures on Logarithmic Algebraic Geometry**

by

**Arthur Ogus**-

**University of California, Berkeley**

Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.

(

**8585**views)

**Lectures on Moduli of Curves**

by

**D. Gieseker**-

**Tata Institute of Fundamental Research**

These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.

(

**4894**views)

**Ample Subvarieties of Algebraic Varieties**

by

**Robin Hartshorne**-

**Springer**

These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

(

**2760**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**10685**views)