Logo

How To Write Proofs by Larry W. Cusick

Small book cover: How To Write Proofs

How To Write Proofs
by

Publisher: California State University, Fresno

Description:
Proofs are the heart of mathematics. If you are a math major, then you must come to terms with proofs--you must be able to read, understand and write them. What is the secret? What magic do you need to know? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Mathematical Reasoning: Writing and ProofMathematical Reasoning: Writing and Proof
by - Pearson Education, Inc.
'Mathematical Reasoning' is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.
(8280 views)
Book cover: An Inquiry-Based Introduction to ProofsAn Inquiry-Based Introduction to Proofs
by - Saint Michael's College
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.
(5705 views)
Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.
(16354 views)
Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
(10256 views)